# 代數導論 Week 4 (Part 2) - Greatest Common Divisor in UFD [TOC] ## 觀察:UFD 可以從分解找最大公因數 :::danger Suppose that $R$ is an UFD, $a, b \in R \setminus \{0\}$ are not unit. Suppose that $$ a = u \prod_{i = 1}^{n}p_i^{e_i} $$ $$ b = v \prod_{i = 1}^{n}p_i^{f_i} $$ where $p_i$ are distinct irreducible and $e_i, f_i \in \Bbb Z^{+} \cup \{0\}$. Then $$ d = \prod_{i = 1}^{n}p_i^{\min(e_i, f_i)} $$ is a greatest common divisor of $a$ and $b$. ::: Suppose that $$ d' \in R \setminus \{0\} $$ and $$ d' \mid a \text{ and }d' \mid b $$ ==GOAL: $d\mid d'$== $d'$ can be factorized into powers of irreducibles $p_1 \dots p_n$. i.e. $$ d' = u\prod_{i = 1}^{n}p_i^{g_i} $$ where $g_{i} \in \Bbb Z^+ \cup \{0\}$ and $u$ is a unit > $d'$ 中的 *irreducible* 只能出現 $p_1 \dots p_n$,不然就會發現 $a$ 跟 $b$ 可以找到另外一個分解,跟分解的唯一性矛盾 Since $$ d' \mid a \Rightarrow g_u \leq e_i $$ Similarily $$ d' \mid b \Rightarrow g_i \leq f_i $$ Combining these two results we have $$ g_i \leq \min(e_i, f_i) $$ So $$ d = d' \left(\prod_{i = 1}^{n}p_i^{\min(e_if_i) - g_i}\right) \Rightarrow d' \mid d $$