Group Theory === - [代數導論筆記](https://hackmd.io/@0xff07/ByT4ldAS8) 基本觀念 --- - [群的簡介](https://hackmd.io/@0xff07/rJfQ-fKSU) - [群的例子](https://hackmd.io/@0xff07/ByrKGkDvL) - [體的簡介](https://hackmd.io/@0xff07/Bk6zc3nHL) - [Homomorphism](https://hackmd.io/@0xff07/Hy7htQ5H8) Subgroup --- - [Subgroup](https://hackmd.io/@0xff07/ryQE2n3SI) - [Group Action Intro (Part 1)](https://hackmd.io/@0xff07/rkkxnZ0rL) - [Group Action Intro (Part 2)](https://hackmd.io/@0xff07/ByfPTNUPL) - [Cyclic Subgroup](https://hackmd.io/@0xff07/S1MKa0pBL) - [Coset](https://hackmd.io/@0xff07/HyeeRMDLI) - [Lagrange Theorem](https://hackmd.io/@0xff07/B14A94UvI) - [Subgroup Generated by Set](https://hackmd.io/@0xff07/rknDN10LI) Quotient Group --- - [Quotient Group](https://hackmd.io/@0xff07/ry7sXOdII) - [The First Isomorphism Theorem](https://hackmd.io/@0xff07/ByOFhmzwI) - [Diamond Isomorphism](https://hackmd.io/@0xff07/BksR6-1DU) - [Lattice Isomorphism (Part 1)](https://hackmd.io/@0xff07/By_fxkbDL) - [The Third Isomorphism](https://hackmd.io/@0xff07/r1JRNWZvL) Group Action --- - [Group Action & Quotient Group](https://hackmd.io/@0xff07/HJVRVrNwI) - [Conjugation](https://hackmd.io/@0xff07/S1tO61UvI) - [Conjugate Class of Sn](https://hackmd.io/@0xff07/rJQ8vkwDL) Sylow Theorem --- - [Sylow Theorem (定義與敘述)](https://hackmd.io/@0xff07/Sy6ItpYDU) - [Sylow Theorem (證明 Part 1)](https://hackmd.io/@0xff07/SyhF5LnPU) - [Sylow Theorem (證明 Part 2)](https://hackmd.io/@0xff07/SJ6SnLhPU) - [Sylow Theorem (相關推論)](https://hackmd.io/@0xff07/Syuh7w3DU) - [Sylow Theorem (例子)](https://hackmd.io/@0xff07/r1_Sb4luU) Direct and Semidirect Product --- - [Automorphism](https://hackmd.io/@0xff07/HywCueAvU) - [Direct Product (Part 1)](https://hackmd.io/@0xff07/B16ig3WuI) - [Direct Product (Part 2)](https://hackmd.io/@0xff07/Skb52BV_L) - [Semidirect Product (Part 1)](https://hackmd.io/@0xff07/rkKJEpWuU) - [Semidirect Product (Part 2)](https://hackmd.io/@0xff07/S1zPEsBuI)
{"metaMigratedAt":"2023-06-15T05:20:56.104Z","metaMigratedFrom":"YAML","title":"107-1 代數導論一 (群)","breaks":true,"contributors":"[{\"id\":\"7787164b-790f-48d8-8d75-16daa9b2a6a9\",\"add\":2697,\"del\":705},{\"id\":\"8f02bc47-badc-4746-9935-e1060d299a0c\",\"add\":1,\"del\":2}]"}
Expand menu