Math 181 Miniproject 11: Riemann Sums.md
---
---
tags: MATH 181
---
Math 181 Miniproject 11: Riemann Sums
===
**Overview:** This miniproject focuses on the use of $\sum$-notation to estimate the area under a curve. Students will use Desmos to set up and evaluate Riemann sums to get the area under a curve that is not amenable to the Fundamental Theorem of Calculus.
**Prerequisites:** Section 4.3 of *Active Calculus.*
---
:::info
For this miniproject you will be estimating the area under the curve
$$
f\left(x\right)=\left|\frac{10x}{x^2+1}\sin \left(x\right)\right|+\frac{4}{x^2+1}
$$
from $x=1$ to $x=10$.

Before you start, enter the function $f(x)$ into Desmos so that you can refer to it later.
(1) Evaluate $R_3$ using Desmos.
:::
(1) $R_3$ is ~10.78
$R_3$~$(f(4)*3)+(f(7)*3)+(f(10)*3)$
:::info
(2) Evaluate $M_3$ using Desmos.
:::
(2) $M_3$ is ~ 14.90
$M_3$~$(f(2.5)*3)+(f(5.5)*3)+(f(8.5)*3)$
:::info
(3) Evaluate $L_9$ using Desmos.
:::
(3) $L_9$ is ~ 18.82
$\sum_{i=1}^{9}[f(1+k*(1))*(1)$
:::info
(4) Evaluate $R_{100}$ using Desmos. You will probably want to use the $\sum$-notation capabilities of Desmos.
:::
(4) $R_{100}$ is ~ 15.77
$\sum_{i=1}^{100}\left[f(1+k\cdot\frac{9}{100}\right)]\cdot\frac{9}{100}$
:::info
(5) Evaluate $R_{1000}$ using Desmos.
:::
(5) $R_{1000}$ is ~ 15.99
$\sum_{i=1}^{1000}\left[f(1+k\cdot\frac{9}{1000}\right)]\cdot\frac{9}{1000}$
:::info
(6) Write out an expression using a limit that will give the exact area under the curve $y=f(x)$ from $x=1$ to $x=10$.
:::
(6)
A= $lim_{n-> ∞}$ $\sum_{i=1}^{n}\left[f(1+k\cdot\frac{9}{n}\right)]\cdot\frac{9}{n}$
---
To submit this assignment click on the Publish button . Then copy the url of the final document and submit it in Canvas.