Math 181 Miniproject 11: Riemann Sums.md --- --- tags: MATH 181 --- Math 181 Miniproject 11: Riemann Sums === **Overview:** This miniproject focuses on the use of $\sum$-notation to estimate the area under a curve. Students will use Desmos to set up and evaluate Riemann sums to get the area under a curve that is not amenable to the Fundamental Theorem of Calculus. **Prerequisites:** Section 4.3 of *Active Calculus.* --- :::info For this miniproject you will be estimating the area under the curve $$ f\left(x\right)=\left|\frac{10x}{x^2+1}\sin \left(x\right)\right|+\frac{4}{x^2+1} $$ from $x=1$ to $x=10$. ![](https://i.imgur.com/h56UdIm.png) Before you start, enter the function $f(x)$ into Desmos so that you can refer to it later. (1) Evaluate $R_3$ using Desmos. ::: (1) $R_3$ is ~10.78 $R_3$~$(f(4)*3)+(f(7)*3)+(f(10)*3)$ :::info (2) Evaluate $M_3$ using Desmos. ::: (2) $M_3$ is ~ 14.90 $M_3$~$(f(2.5)*3)+(f(5.5)*3)+(f(8.5)*3)$ :::info (3) Evaluate $L_9$ using Desmos. ::: (3) $L_9$ is ~ 18.82 $\sum_{i=1}^{9}[f(1+k*(1))*(1)$ :::info (4) Evaluate $R_{100}$ using Desmos. You will probably want to use the $\sum$-notation capabilities of Desmos. ::: (4) $R_{100}$ is ~ 15.77 $\sum_{i=1}^{100}\left[f(1+k\cdot\frac{9}{100}\right)]\cdot\frac{9}{100}$ :::info (5) Evaluate $R_{1000}$ using Desmos. ::: (5) $R_{1000}$ is ~ 15.99 $\sum_{i=1}^{1000}\left[f(1+k\cdot\frac{9}{1000}\right)]\cdot\frac{9}{1000}$ :::info (6) Write out an expression using a limit that will give the exact area under the curve $y=f(x)$ from $x=1$ to $x=10$. ::: (6) A= $lim_{n-> ∞}$ $\sum_{i=1}^{n}\left[f(1+k\cdot\frac{9}{n}\right)]\cdot\frac{9}{n}$ --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.