> # 迴歸分析作業02 :::success **Homework** 證明: **1.** ${Cov}$($\overline{y}$,$\hat{\beta_1}$)=${0}$ **2.** $\Sigma$($y_i$-$\hat{y_i}$)($\hat{y_i}$-$\overline{y}$)=${0}$ ::: <font size=4>**1.**$Cov$($\overline{y}$,$\hat{\beta_1}$) =$\cfrac{1}{n‧S_{xx}}$$Cov$($\Sigma$$y_i$,$\Sigma$($x_i$-$\overline{x}$)($y_i$-$\overline{y}$)) #註:${n}$和${S_{xx}}$是常數,故可以提出來。 =$\cfrac{1}{n‧S_{xx}}$$Cov$($\Sigma$$y_i$,($\Sigma$($x_i$-$\overline{x})(y_i)$-($\Sigma$$x_i$-$\overline{x})(\overline{y}$)) #註:($\Sigma$$x_i$-$\overline{x})(\overline{y}$)=$\Sigma$$x_i$-${n}$$*$$\cfrac{\Sigma(x_i)}{n}*(\overline{y}$)=${0}$ =$\cfrac{1}{n‧S_{xx}}$$\Sigma$ $Cov((y_i),(x_i$-$\overline{x})(y_i)$) =$\cfrac{1}{n‧S_{xx}}$$\Sigma$ $((x_i$-$\overline{x})Cov(y_i,y_i)$) #註:$\Sigma$($x_i$-$\overline{x})$=${0}$ & $Cov(y_i,y_i)$=$var(y_i)$=$\sigma^2$ =${0}$ <font size=4>**2.**$\Sigma$($y_i$-$\hat{y_i}$)($\hat{y_i}$-$\overline{y}$) =$\Sigma$(${e_i}$)($\hat{\beta_0}$+$\hat{\beta_1}$${x_i}$-$\overline{y}$) =$\Sigma$${e_i}$$\hat{\beta_0}$+$\Sigma$${e_i}$$\hat{\beta_1}$${x_i}$-($\Sigma$${e_i}$)$\overline{y}$ #註:$\Sigma$${e_i}$=$\Sigma$($y_i$-$\hat{y_i}$)=${0}$ =$\hat{\beta_1}$$\Sigma$${e_i}$${x_i}$ =$\hat{\beta_1}$[$\Sigma$($y_i$-$\hat{y_i}$)(${x_i}$)] =$\hat{\beta_1}$[$\Sigma$($y_i$-($\hat{\beta_0}$+$\hat{\beta_1}$${x_i}))$(${x_i}$)] =$\hat{\beta_1}$[$\Sigma$$x_i$$y_i$-$\Sigma$$\hat{\beta_0}$${x_i}$-$\Sigma$$\hat{\beta_1}$${x_i}^2$] =$\hat{\beta_1}$[$\Sigma$$x_i$($\hat{\beta_0}$+$\hat{\beta_1}$${x_i}$)-$\Sigma$$\hat{\beta_0}$${x_i}$-$\Sigma$$\hat{\beta_1}$${x_i}^2$] =$\hat{\beta_1}$[$\Sigma$$\hat{\beta_0}$$x_i$+$\Sigma$$\hat{\beta_1}$${x_i^2}$-$\Sigma$$\hat{\beta_0}$${x_i}$-$\Sigma$$\hat{\beta_1}$${x_i}^2$] =${0}$